Files
clawdbot/skills/self-improving-agent/SKILL.md
James 36eb4a7b3b Add skills, learnings & memory updates (2026-01-26)
- New skills: clawddocs, claude-code-usage, summarize, homeassistant, humanizer, self-improving-agent
- Add .learnings/ for self-improvement tracking
- Document proaktive cron config (LRN-20260126-001)
- Update USER.md: Löchgau as former residence
- Update TOOLS.md: Peekaboo workaround
- Memory files for 2026-01-25 and 2026-01-26
2026-01-26 09:26:26 +01:00

501 lines
14 KiB
Markdown

---
name: self-improvement
description: "Captures learnings, errors, and corrections to enable continuous improvement. Use when: (1) A command or operation fails unexpectedly, (2) User corrects Claude ('No, that's wrong...', 'Actually...'), (3) User requests a capability that doesn't exist, (4) An external API or tool fails, (5) Claude realizes its knowledge is outdated or incorrect, (6) A better approach is discovered for a recurring task. Also review learnings before major tasks."
---
# Self-Improvement Skill
Log learnings and errors to markdown files for continuous improvement. Coding agents can later process these into fixes, and important learnings get promoted to project memory.
## Quick Reference
| Situation | Action |
|-----------|--------|
| Command/operation fails | Log to `.learnings/ERRORS.md` |
| User corrects you | Log to `.learnings/LEARNINGS.md` with category `correction` |
| User wants missing feature | Log to `.learnings/FEATURE_REQUESTS.md` |
| API/external tool fails | Log to `.learnings/ERRORS.md` with integration details |
| Knowledge was outdated | Log to `.learnings/LEARNINGS.md` with category `knowledge_gap` |
| Found better approach | Log to `.learnings/LEARNINGS.md` with category `best_practice` |
| Similar to existing entry | Link with `**See Also**`, consider priority bump |
| Broadly applicable learning | Promote to `CLAUDE.md`, `AGENTS.md`, and/or `.github/copilot-instructions.md` |
## Setup
Create `.learnings/` directory in project root if it doesn't exist:
```bash
mkdir -p .learnings
```
Copy templates from `assets/` or create files with headers.
## Logging Format
### Learning Entry
Append to `.learnings/LEARNINGS.md`:
```markdown
## [LRN-YYYYMMDD-XXX] category
**Logged**: ISO-8601 timestamp
**Priority**: low | medium | high | critical
**Status**: pending
**Area**: frontend | backend | infra | tests | docs | config
### Summary
One-line description of what was learned
### Details
Full context: what happened, what was wrong, what's correct
### Suggested Action
Specific fix or improvement to make
### Metadata
- Source: conversation | error | user_feedback
- Related Files: path/to/file.ext
- Tags: tag1, tag2
- See Also: LRN-20250110-001 (if related to existing entry)
---
```
### Error Entry
Append to `.learnings/ERRORS.md`:
```markdown
## [ERR-YYYYMMDD-XXX] skill_or_command_name
**Logged**: ISO-8601 timestamp
**Priority**: high
**Status**: pending
**Area**: frontend | backend | infra | tests | docs | config
### Summary
Brief description of what failed
### Error
```
Actual error message or output
```
### Context
- Command/operation attempted
- Input or parameters used
- Environment details if relevant
### Suggested Fix
If identifiable, what might resolve this
### Metadata
- Reproducible: yes | no | unknown
- Related Files: path/to/file.ext
- See Also: ERR-20250110-001 (if recurring)
---
```
### Feature Request Entry
Append to `.learnings/FEATURE_REQUESTS.md`:
```markdown
## [FEAT-YYYYMMDD-XXX] capability_name
**Logged**: ISO-8601 timestamp
**Priority**: medium
**Status**: pending
**Area**: frontend | backend | infra | tests | docs | config
### Requested Capability
What the user wanted to do
### User Context
Why they needed it, what problem they're solving
### Complexity Estimate
simple | medium | complex
### Suggested Implementation
How this could be built, what it might extend
### Metadata
- Frequency: first_time | recurring
- Related Features: existing_feature_name
---
```
## ID Generation
Format: `TYPE-YYYYMMDD-XXX`
- TYPE: `LRN` (learning), `ERR` (error), `FEAT` (feature)
- YYYYMMDD: Current date
- XXX: Sequential number or random 3 chars (e.g., `001`, `A7B`)
Examples: `LRN-20250115-001`, `ERR-20250115-A3F`, `FEAT-20250115-002`
## Resolving Entries
When an issue is fixed, update the entry:
1. Change `**Status**: pending``**Status**: resolved`
2. Add resolution block after Metadata:
```markdown
### Resolution
- **Resolved**: 2025-01-16T09:00:00Z
- **Commit/PR**: abc123 or #42
- **Notes**: Brief description of what was done
```
Other status values:
- `in_progress` - Actively being worked on
- `wont_fix` - Decided not to address (add reason in Resolution notes)
- `promoted` - Elevated to CLAUDE.md, AGENTS.md, or .github/copilot-instructions.md
## Promoting to Project Memory
When a learning is broadly applicable (not a one-off fix), promote it to permanent project memory.
### When to Promote
- Learning applies across multiple files/features
- Knowledge any contributor (human or AI) should know
- Prevents recurring mistakes
- Documents project-specific conventions
### Promotion Targets
| Target | What Belongs There |
|--------|-------------------|
| `CLAUDE.md` | Project facts, conventions, gotchas for all Claude interactions |
| `AGENTS.md` | Agent-specific workflows, tool usage patterns, automation rules |
| `.github/copilot-instructions.md` | Project context and conventions for GitHub Copilot |
### How to Promote
1. **Distill** the learning into a concise rule or fact
2. **Add** to appropriate section in target file (create file if needed)
3. **Update** original entry:
- Change `**Status**: pending``**Status**: promoted`
- Add `**Promoted**: CLAUDE.md`, `AGENTS.md`, or `.github/copilot-instructions.md`
### Promotion Examples
**Learning** (verbose):
> Project uses pnpm workspaces. Attempted `npm install` but failed.
> Lock file is `pnpm-lock.yaml`. Must use `pnpm install`.
**In CLAUDE.md** (concise):
```markdown
## Build & Dependencies
- Package manager: pnpm (not npm) - use `pnpm install`
```
**Learning** (verbose):
> When modifying API endpoints, must regenerate TypeScript client.
> Forgetting this causes type mismatches at runtime.
**In AGENTS.md** (actionable):
```markdown
## After API Changes
1. Regenerate client: `pnpm run generate:api`
2. Check for type errors: `pnpm tsc --noEmit`
```
## Recurring Pattern Detection
If logging something similar to an existing entry:
1. **Search first**: `grep -r "keyword" .learnings/`
2. **Link entries**: Add `**See Also**: ERR-20250110-001` in Metadata
3. **Bump priority** if issue keeps recurring
4. **Consider systemic fix**: Recurring issues often indicate:
- Missing documentation (→ promote to CLAUDE.md or .github/copilot-instructions.md)
- Missing automation (→ add to AGENTS.md)
- Architectural problem (→ create tech debt ticket)
## Periodic Review
Review `.learnings/` at natural breakpoints:
### When to Review
- Before starting a new major task
- After completing a feature
- When working in an area with past learnings
- Weekly during active development
### Quick Status Check
```bash
# Count pending items
grep -h "Status\*\*: pending" .learnings/*.md | wc -l
# List pending high-priority items
grep -B5 "Priority\*\*: high" .learnings/*.md | grep "^## \["
# Find learnings for a specific area
grep -l "Area\*\*: backend" .learnings/*.md
```
### Review Actions
- Resolve fixed items
- Promote applicable learnings
- Link related entries
- Escalate recurring issues
## Detection Triggers
Automatically log when you notice:
**Corrections** (→ learning with `correction` category):
- "No, that's not right..."
- "Actually, it should be..."
- "You're wrong about..."
- "That's outdated..."
**Feature Requests** (→ feature request):
- "Can you also..."
- "I wish you could..."
- "Is there a way to..."
- "Why can't you..."
**Knowledge Gaps** (→ learning with `knowledge_gap` category):
- User provides information you didn't know
- Documentation you referenced is outdated
- API behavior differs from your understanding
**Errors** (→ error entry):
- Command returns non-zero exit code
- Exception or stack trace
- Unexpected output or behavior
- Timeout or connection failure
## Priority Guidelines
| Priority | When to Use |
|----------|-------------|
| `critical` | Blocks core functionality, data loss risk, security issue |
| `high` | Significant impact, affects common workflows, recurring issue |
| `medium` | Moderate impact, workaround exists |
| `low` | Minor inconvenience, edge case, nice-to-have |
## Area Tags
Use to filter learnings by codebase region:
| Area | Scope |
|------|-------|
| `frontend` | UI, components, client-side code |
| `backend` | API, services, server-side code |
| `infra` | CI/CD, deployment, Docker, cloud |
| `tests` | Test files, testing utilities, coverage |
| `docs` | Documentation, comments, READMEs |
| `config` | Configuration files, environment, settings |
## Best Practices
1. **Log immediately** - context is freshest right after the issue
2. **Be specific** - future agents need to understand quickly
3. **Include reproduction steps** - especially for errors
4. **Link related files** - makes fixes easier
5. **Suggest concrete fixes** - not just "investigate"
6. **Use consistent categories** - enables filtering
7. **Promote aggressively** - if in doubt, add to CLAUDE.md or .github/copilot-instructions.md
8. **Review regularly** - stale learnings lose value
## Gitignore Options
**Keep learnings local** (per-developer):
```gitignore
.learnings/
```
**Track learnings in repo** (team-wide):
Don't add to .gitignore - learnings become shared knowledge.
**Hybrid** (track templates, ignore entries):
```gitignore
.learnings/*.md
!.learnings/.gitkeep
```
## Hook Integration
Enable automatic reminders through agent hooks. This is **opt-in** - you must explicitly configure hooks.
### Quick Setup (Claude Code / Codex)
Create `.claude/settings.json` in your project:
```json
{
"hooks": {
"UserPromptSubmit": [{
"matcher": "",
"hooks": [{
"type": "command",
"command": "./skills/self-improvement/scripts/activator.sh"
}]
}]
}
}
```
This injects a learning evaluation reminder after each prompt (~50-100 tokens overhead).
### Full Setup (With Error Detection)
```json
{
"hooks": {
"UserPromptSubmit": [{
"matcher": "",
"hooks": [{
"type": "command",
"command": "./skills/self-improvement/scripts/activator.sh"
}]
}],
"PostToolUse": [{
"matcher": "Bash",
"hooks": [{
"type": "command",
"command": "./skills/self-improvement/scripts/error-detector.sh"
}]
}]
}
}
```
### Available Hook Scripts
| Script | Hook Type | Purpose |
|--------|-----------|---------|
| `scripts/activator.sh` | UserPromptSubmit | Reminds to evaluate learnings after tasks |
| `scripts/error-detector.sh` | PostToolUse (Bash) | Triggers on command errors |
See `references/hooks-setup.md` for detailed configuration and troubleshooting.
## Automatic Skill Extraction
When a learning is valuable enough to become a reusable skill, extract it using the provided helper.
### Skill Extraction Criteria
A learning qualifies for skill extraction when ANY of these apply:
| Criterion | Description |
|-----------|-------------|
| **Recurring** | Has `See Also` links to 2+ similar issues |
| **Verified** | Status is `resolved` with working fix |
| **Non-obvious** | Required actual debugging/investigation to discover |
| **Broadly applicable** | Not project-specific; useful across codebases |
| **User-flagged** | User says "save this as a skill" or similar |
### Extraction Workflow
1. **Identify candidate**: Learning meets extraction criteria
2. **Run helper** (or create manually):
```bash
./skills/self-improvement/scripts/extract-skill.sh skill-name --dry-run
./skills/self-improvement/scripts/extract-skill.sh skill-name
```
3. **Customize SKILL.md**: Fill in template with learning content
4. **Update learning**: Set status to `promoted_to_skill`, add `Skill-Path`
5. **Verify**: Read skill in fresh session to ensure it's self-contained
### Manual Extraction
If you prefer manual creation:
1. Create `skills/<skill-name>/SKILL.md`
2. Use template from `assets/SKILL-TEMPLATE.md`
3. Follow [Agent Skills spec](https://agentskills.io/specification):
- YAML frontmatter with `name` and `description`
- Name must match folder name
- No README.md inside skill folder
### Extraction Detection Triggers
Watch for these signals that a learning should become a skill:
**In conversation:**
- "Save this as a skill"
- "I keep running into this"
- "This would be useful for other projects"
- "Remember this pattern"
**In learning entries:**
- Multiple `See Also` links (recurring issue)
- High priority + resolved status
- Category: `best_practice` with broad applicability
- User feedback praising the solution
### Skill Quality Gates
Before extraction, verify:
- [ ] Solution is tested and working
- [ ] Description is clear without original context
- [ ] Code examples are self-contained
- [ ] No project-specific hardcoded values
- [ ] Follows skill naming conventions (lowercase, hyphens)
## Multi-Agent Support
This skill works across different AI coding agents with agent-specific activation.
### Claude Code
**Activation**: Hooks (UserPromptSubmit, PostToolUse)
**Setup**: `.claude/settings.json` with hook configuration
**Detection**: Automatic via hook scripts
### Codex CLI
**Activation**: Hooks (same pattern as Claude Code)
**Setup**: `.codex/settings.json` with hook configuration
**Detection**: Automatic via hook scripts
### GitHub Copilot
**Activation**: Manual (no hook support)
**Setup**: Add to `.github/copilot-instructions.md`:
```markdown
## Self-Improvement
After solving non-obvious issues, consider logging to `.learnings/`:
1. Use format from self-improvement skill
2. Link related entries with See Also
3. Promote high-value learnings to skills
Ask in chat: "Should I log this as a learning?"
```
**Detection**: Manual review at session end
### Agent-Agnostic Guidance
Regardless of agent, apply self-improvement when you:
1. **Discover something non-obvious** - solution wasn't immediate
2. **Correct yourself** - initial approach was wrong
3. **Learn project conventions** - discovered undocumented patterns
4. **Hit unexpected errors** - especially if diagnosis was difficult
5. **Find better approaches** - improved on your original solution
### Copilot Chat Integration
For Copilot users, add this to your prompts when relevant:
> After completing this task, evaluate if any learnings should be logged to `.learnings/` using the self-improvement skill format.
Or use quick prompts:
- "Log this to learnings"
- "Create a skill from this solution"
- "Check .learnings/ for related issues"